Oxygen isotopic composition of the solar nebula gas inferred from high-precision isotope imaging of melilite crystals in an Allende CAI

Park C., Wakaki S., Sakamoto N., Kobayashi S. and Yurimoto H. (2012)

Meteoritics & Planetary Science 47, pp.2070-2083

1st June 2018 Text seminar

Sohei Wada

Contents

- 1. Introduction
- 2. Analytical techniques
- 3. Results
- 4. Discussion
- 5. Conclusion

About Melilite

Melilite Åkermanite, $Ca_2MgSi_2O_7$ — Gehlenite, $Ca_2Al_2SiO_7$ solid solution

One of common primary minerals in CAIs

Formation of normally zoned melilite vs. reversely zoned

Commonly observed in Fluffy Type A CAIs

may have recorded oxygen isotope composition of the solar nebula gas

Various thermal processes in the nebula and on the parent body

Some CAIs may have experienced these processes. The oxygen isotope in CAI melilites may have exchanged with the surrounding gas in the nebula and aqueous fluid on the parent body.

Several processes have been proposed to explain the large variations in the O-isotopic compositions of melilite grains.

- 1. Isotope exchange between the gas and partially molten CAI
- 2. Gas-solid interaction and solid state diffusion by repetitive heating over a long accumulated time.
- 3. Isotope exchange with fluid during aqueous alteration and metamorphism on a parent body.

Purpose and Methods

In situ analyses

Since the variations in the O-isotopic compositions are on submicron order, *in situ* analyses are necessary to identify.

Isotope imaging

useful to distinguished the primary and secondary features of the oxygen isotopic compositions (Yurimoto et al. 2003, Kunihiro et al. 2005)

They conducted *in situ* spot analyses and isotope imaging in order to identify whether these processes were existence or not.

Analytical techniques

Petrography

FE-SEM; JEOL JSM-7000F EDS; Oxford INCA Energy **To obtain BSE images and X-ray maps, and to conduct quantitative chemical analyses**

Petrography

EBSD; Oxford Instruments

To determine grain boundaries

In situ analyses

SIMS; Cameca ims-1270

To analyze the O-isotopic compositions on submicron order

Isotope imaging

SIMS; Cameca ims-1270 SCAPS **To obtain quantitative isotope images**

Quality of Isotopography

Fig. 2. SEM image, Isotopograph and line profiles from A to B in #1.

Petrography

Fig.1 (a) Cross polarized light image Fig.1 (b) X-ray RGB (Mg Ca Al) map image

Forming minerals

Melilite, few Spinel, Perovskite, Fassaite

Texture

Coarse-grained compact Type A CAI

Åkermanitic core

~100µm grain size, Åk~28

Gehlenitic mantle

<~100µm grain size, Åk~10

O-isotopic composition of mantle melilite

Fig. 3. Oxygen isotopic distribution in mantle melilites.

Imaging

BSE image (1) Back scattered electron

EBSD image The difference in color reflects the difference in crystal direction.

Si/Al Red: Åk-rich, Blue: Åk-poor

δ¹⁸**O** Red: ¹⁶O-poor, Blue: ¹⁶O-rich

Schematic diagram

Isotopography: uniform depletion of ¹⁶O

The strikingly different O-isotopic compositions among the melilite grains can be seen.

Fig. 4. SEM image and isotopograph of #2.

Isotopography: uniform enrichment of ¹⁶O

Isotopography: variation from ¹⁶O-poor core to ¹⁶O-rich rim

Isotopography: ¹⁶O-poor crystal rim

¹⁶O-poor compositions of ~10μm near holes, cracks, or secondary phases can be seen.

Discussion

The formation of reverse zonation throughout melilite crystals is best explained by gas-solid condensation (MacPherson and Grossman 1984).

➡ Reversely zoned melilites should recorded the O-isotopic composition of the solar nebula gas in which the melilites condensed.

However, Oxygen isotopic compositions could have been modified by ...

- 1. Gas-melt interaction
- 2. Gas-solid diffusive exchange
- 3. Fluid assisted thermal metamorphism

Gas-melt interaction

Reversely zoned melilites could be formed by igneous process?

Very unlikely to be formed by simple melt-crystallization

If anorthite crystallization is suppressed in the melt with the Type B CAI composition, then pyroxene could be cocrystallized with reversely zoned melilite (MacPherson et al. 1984).

➡ The reverse zoning in Type B significantly different from the observations in this study.

Reversely zoned melilite could be reproduced by evaporation of a melt (Grossman et al. 2002).

➡ Unrealistic

Gas-melt interaction

Different O-isotopic compositions among the melilite grain could be formed from a single melt composition?

Oxygen isotopes in the melt would be quickly homogenized.

The wide and gradual change of oxygen isotopes in a single crystal (Fig. 7-9) is **inconsistent** with the origin from a melt.

Partial melting may result in oxygen isotope variation within a single crystal. The O-isotopic distribution changes abruptly with in a single crystal (Yurimoto et al. 1998)

Fig. 8. Isotopograph of #6

Therefore, the best explanation for the reverse zoning is direct condensation from a gas.

- A small degree of pressure decrease could result in the reverse zoning of melilite.
- Gas-melt interaction may not have occurred in ON01.

Gas-solid diffusive exchange

Gradually O-isotope compositional change can be explained by gas-solid interaction followed by solid-state diffusion occurred by **repetitive heating** events at high temperature (Simon et al. 2011).

Fig. 11. O-diffusion in melilite and perovskite at 1600K.

Fluid-assisted thermal metamorphism

Metamorphism on the Allende parent body

Allende is thought to be one of the most metamorphosed CV3 chondrites (Bonal et al. 2006).

The peak temperature ~800K (Weinbruch et al. 1994).

Generally associated with aqueous alteration (Krot et al. 1998).

This fluid was ¹⁶O-poor (Δ^{17} O ~ -3 - 0‰) (Choi et al. 1997).

This O-isotopic composition is similar to those of the secondary anorthite and grossular in ON01, implying that **their O-isotopic composition reflect that of the fluid on the CV parent asteroid** (Yurimoto et al. 2008).

Grossular

-40 -20

Fig. 10. Isotopograph of #8.

0

20(%)

Fluid-assisted thermal metamorphism

Fluid-assisted thermal metamorphism

Wasson et al. (2001) suggested alternative idea.

¹⁶O-poor areas within ¹⁶O-rich melilite reflect alteration of the oxygen isotopes by dissolution and reprecipitation (Nakamura et al. 2005).

However, a reset of oxygen isotopes cannot occur in the core of large melilite.

- → Cannot be simply explained by aqueous alteration on the parent body.
- + The parent body process could not lead to change of ¹⁶O-poor to ¹⁶O-rich.

➡ Only melilite grains with ¹⁶O-poor crystal rim may have the result of fluid-assisted thermal metamorphism.

Direct records of gas composition

- 1. Gas-melt interaction
- 2. Gas-solid diffusive exchange

➡ Cannot be explained for the oxygen isotopic variations

- 3. Fluid assisted thermal metamorphism
 - ➡ Could partly disturb the oxygen isotopes

The three types of oxygen isotopic composition (uniform depletion of ¹⁶O, uniform enrichment of ¹⁶O and variation from ¹⁶O-poor core to ¹⁶O-rich rim) directly reflect those of solar nebula gas.

Hypothesis

Reversely zoned melilites in the Gehlenite mantle are evidence for the mantle condensed from gas.

Other minerals in Gehlenite mantle (Hibonite, spinel and perovskite assemblages) should also be formed by condensation.

Texture of the assemblage:

Spinel replaces hibonite Small perovskite grains are attached to the spinel

Hibonite
Gas
Gas
Gas

CaMg_xTi_xAl_{12-2x}O₁₉
 $(6 - 2x)Mg + (1 - x)TiO_2 + (6 - 2x)H_2O$

$$\rightarrow \frac{\text{Spinel}}{(6-x)\text{MgAl}_2\text{O}_4} + \frac{\text{Perovskite}}{\text{CaTiO}_3} + (6-2x)\text{H}_2$$

Fig. . Crystal structure of hibonite and spinel (from Simon et al. 2006).

Introduction > Analytical techniques > Results > Discussion

The oxygen compositions of spinel and perovskite are inherited from that of the reactant hibonite.

If hibonite is uniformly ¹⁶O-enriched (δ^{18} O ~ -55‰), then spinel and perovskite are also ¹⁶O-rich. Spinel and perovskite could have the ¹⁶O-rich composition, regardless of the O-isotopic composition of the gas.

Hibonite
Gas
Gas
Gas

CaMg_xTi_xAl_{12-2x}O₁₉
 $(6 - 2x)Mg + (1 - x)TiO_2 + (6 - 2x)H_2O$

$$\rightarrow \frac{\text{Spinel}}{(6-x)\text{MgAl}_2\text{O}_4} + \frac{\text{Perovskite}}{\text{CaTiO}_3} + (6-2x)\text{H}_2$$

The texture of assemblages can be explained by condensation. Spinel and perovskite have the ¹⁶O-rich compositions, regardless of the Oisotopic composition of the gas.

These conclusions support the hypothesis that reversely zoned melilites in the Gehlenite mantle are evidence for the mantle condensed from gas.

Spinel and perovskite are formed by melt crystallization?

Crystallization sequence from a melt of Type A CAI

 $\textbf{Spinel} \rightarrow \textbf{Gehlenitic melilite} \rightarrow \textbf{Perovskite}$

➡ O-isotopic compositions of melilite should be the same as those of spinel and perovskite.

However, ¹⁶O-rich spinel and perovskite adjoin¹⁶O-poor melilite.

These minerals were formed by condensation.

The Gehlenite mantle formed by aggregation of gas

condensates to pre-existing inclusion

Introduction > Analytical techniques > Results > Discussion

Reversely zoned melilite could have formed by the condensation with a decrease in pressure (MacPherson and Grossman 1984).

The solar nebula gas changed from ¹⁶O-poor to ¹⁶O-rich during the crystal growth of reversely zoned melilite.

Mechanism

Itoh and Yurimoto (2003) proposed likely scenario to explain the coexistence of two oxygen isotopic reservoir.

Introduction > Analytical techniques > Results > Discussion

Reversely zoned melilite

with compositional variation from ¹⁶O-poor to ¹⁶O-rich

could be formed in the fluctuation zone.

with uniformly ¹⁶O-enriched or ¹⁶O-depleted compositions could have formed in the ¹⁶O-rich or ¹⁶O-poor gasses when gas pressure decreased.

Conclusion

They conducted *in situ* spot analyses and isotope imaging in order to identify whether secondary processes were existence or not.

The three types of oxygen isotopic composition (uniform depletion of ¹⁶O, uniform enrichment of ¹⁶O and variation from ¹⁶O-poor core to ¹⁶O-rich rim) in CTA CAI ON01 from Allende meteorite directly reflect those of solar nebula gas.

Reversely zoned melilites could be formed by condensation in the fluctuation zone of the protoplanetary disk.