μϊ±@‹³s

Noriyuki Kawasaki

 

–kŠC“Ή‘εŠw ‘εŠw‰@—ŠwŒ€‹†‰@

’n‹…˜f―‰ΘŠw•”–ε ’n‹…˜f―ƒVƒXƒeƒ€‰ΘŠw•ͺ–μ y‹³Žφ

060-0810@ŽD–yŽs–k‹ζ–k10πΌ8’š–Ϊ
011-706-3586

kawasaki gath ep.sci.hokudai.ac.jp

 

—ŠwŒ€‹†‰@ƒz[ƒ€ƒy[ƒW

Google scholar

Researchmap

 

Œo—π

2006.3   ŽRŒϋŒ§—§ŽRŒϋ‚“™ŠwZ ‘²‹Ζ

2010.3   –kŠC“Ή‘εŠw—Šw•” ‘²‹Ζ

2012.3   –kŠC“Ή‘εŠw‘εŠw‰@—Šw‰@Ž©‘RŽj‰ΘŠwκU ”ŽŽm‘OŠϊ‰Ϋ’φ C—Ή

2015.3   –kŠC“Ή‘εŠw‘εŠw‰@—Šw‰@Ž©‘RŽj‰ΘŠwκU ”ŽŽmŒγŠϊ‰Ϋ’φ C—Ή@”ŽŽmi—Šwj

ŠwˆΚ˜_•ΆFIsotopic signature of oxygen and magnesium for coarse-grained Ca-Al-rich inclusions from carbonaceous chondrites

i’Y‘fŽΏƒRƒ“ƒhƒ‰ƒCƒg‚ΙŠά‚ά‚κ‚ι‘e—±“οŠφ”­«•ο—L•¨‚ΜŽ_‘fEƒ}ƒOƒlƒVƒEƒ€“―ˆΚ‘Μ‰F’ˆ‰»Šwj

 

2014.42015.3     “ϊ–{ŠwpU‹»‰ο “Α•ΚŒ€‹†ˆυ DC2

2015.42016.3     “ϊ–{ŠwpU‹»‰ο “Α•ΚŒ€‹†ˆυ PDi–kŠC“Ή‘εŠwj

2016.42018.2     ‰F’ˆq‹σŒ€‹†ŠJ”­‹@\ ‰F’ˆ‰ΘŠwŒ€‹†Š ‰F’ˆq‹σƒvƒƒWƒFƒNƒgŒ€‹†ˆυ

2018.3–2022.2     –kŠC“Ή‘εŠw ‘εŠw‰@—ŠwŒ€‹†‰@ ’n‹…˜f―‰ΘŠw•”–ε •‹³

2022.3–2025.3     –kŠC“Ή‘εŠw ‘εŠw‰@—ŠwŒ€‹†‰@ ’n‹…˜f―‰ΘŠw•”–ε y‹³Žφ

2025.4         –kŠC“Ή‘εŠw ‘εŠw‰@—ŠwŒ€‹†‰@ ’n‹…˜f―‰ΘŠw•”–ε y‹³ŽφiƒAƒ“ƒrƒVƒƒƒXƒeƒjƒ…ƒAƒgƒ‰ƒbƒNj

 

Έ“Η—L‚θ˜_•Ά

First/corresponding author

1.       Kawasaki N., Yamamoto D., Wada S., Park C., Kim H., Sakamoto N. and Yurimoto H. (2024) g26Al–26Mg chronology of high-temperature condensate hibonite in a fine-grained, Ca-Al-rich inclusion from reduced CV chondriteh Meteoritics & Planetary Science, 59, 630–639.

2.       Kawasaki N., Nagashima K., Sakamoto N., Matsumoto T. and 90 coauthors. (2022) gOxygen isotopes of anhydrous primary minerals show kinship between asteroid Ryugu and comet 81P/Wild2h Science Advances, 8, eade2067.

3.       Kawasaki N., Itoh S., Sakamoto N., Simon S. B., Yamamoto D. and Yurimoto H. (2021) gOxygen and Al−Mg isotopic constraints on cooling rate and age of partial melting of an Allende Type B CAI, Golfballh Meteoritics & Planetary Science, 56, 1224–1239.

4.       Kawasaki N., Park C., Wakaki S., Kim H., Park S., Yoshimura T., Nagaishi K., Kim H. N., Sakamoto N. and Yurimoto H. (2021) gAn effect of variations in relative sensitivity factors on Al–Mg systematics of Ca-Al-rich inclusions in meteorites with secondary ion mass spectrometryh Geochemical Journal, 55, 283–287.

5.       Kawasaki N., Wada S., Park C., Sakamoto N. and Yurimoto H. (2020) gVariations in initial 26Al/27Al ratios among fine-grained Ca-Al-rich inclusions from reduced CV chondritesh Geochimica et Cosmochimica Acta, 279, 1–15.

6.       Kawasaki N., Park C., Sakamoto N., Park S. Y., Kim H. N., Kuroda M. and Yurimoto H. (2019) gVariations in initial 26Al/27Al ratios among fluffy Type A Ca-Al-rich inclusions from reduced CV chondritesh Earth and Planetary Science Letters, 511, 25–35.

7.       Kawasaki N., Simon S. B., Grossman L., Sakamoto N. and Yurimoto H. (2018) gCrystal growth and disequilibrium distribution of oxygen isotopes in an igneous Ca-Al-rich inclusion from the Allende carbonaceous chondriteh Geochimica et Cosmochimica Acta, 221, 318–341.

8.       Kawasaki N., Itoh S., Sakamoto N. and Yurimoto H. (2017) gChronological study of oxygen isotope composition for the solar protoplanetary disk recorded in a fluffy Type A CAI from Vigaranoh Geochimica et Cosmochimica Acta, 201, 83–102.

9.       Kawasaki N., Kato C., Itoh S., Wakaki S., Ito M. and Yurimoto H. (2015) g26Al-26Mg chronology and oxygen isotope distributions of multiple melting for a Type C CAI from Allendeh Geochimica et Cosmochimica Acta, 169, 99–114.

10.    Kawasaki N., Sakamoto N. and Yurimoto H. (2012) gOxygen isotopic and chemical zoning of melilite crystals in a Type A Ca-Al-rich inclusion of Efremovka CV3 chondriteh Meteoritics & Planetary Science, 47, 2084–2093.

 

Second author

11.    Suzumura A., Kawasaki N., Yurimoto H. and Itoh S. (2024) gCondensation of refractory minerals on igneous compact Type A Ca-Al-rich inclusion from Northwest Africa 7865 CV chondriteh Meteoritics & Planetary Science, 59, 2388–2402.

12.    Yamamoto D., Kawasaki N., Tachibana S., Ishizaki L., Sakurai R. and Yurimoto H. (2024) gAn experimental simulation of oxygen isotope exchange reaction between amorphous silicate dust and carbon monoxide gas in the early Solar Systemh Geochimica et Cosmochimica Acta, 374, 93–105.

13.    Bajo K., Kawasaki N., Sakaguchi I., Suzuki T. T., Itose S., Matsuya M., Ishihara M., Uchino K. and Yurimoto H. (2024) gIn Situ Helium Isotope Microimaging of Meteoritesh Analytical Chemistry, 96, 5143–5149.

14.    Fujiya W., Kawasaki N., Nagashima K., Sakamoto N. and 85 coauthors (2023) gCarbonate record of temporal change in oxygen fugacity and gaseous species in asteroid Ryuguh Nature Geoscience, 16, 675–682.

15.    Yamamoto D., Kawasaki N., Tachibana S., Kamibayashi M. and Yurimoto H. (2022) gOxygen isotope exchange kinetics between CAI melt and carbon monoxide gas: Implication for CAI formation in the earliest Solar Systemh Geochimica et Cosmochimica Acta, 336, 104–112.

16.    Yamamoto D., Kawasaki N., Tachibana S., Kamibayashi M. and Yurimoto H. (2021) gAn experimental study on oxygen isotope exchange reaction between CAI melt and low-pressure water vapor under simulated Solar nebular conditionsh Geochimica et Cosmochimica Acta, 314, 108–120.

17.    Suzumura K., Kawasaki N., Seto Y., Yurimoto H. and Itoh S. (2021) gOrigin of minerals in åkermanite-rich patch texture and oxygen isotopic evolution of compact Type A Ca-Al-rich inclusions from the Northwest Africa 7865 CV chondriteh Geochimica et Cosmochimica Acta, 303, 51–65.

18.    Wada S., Kawasaki N., Park C. and Yurimoto H. (2020) gMelilite condensed from an 16O-poor gaseous reservoir: Evidence from a fine-grained Ca-Al-rich inclusion of Northwest Africa 8613h Geochimica et Cosmochimica Acta, 288, 161–175.

19.    Zhang A.-C., Kawasaki N., Bao H., Liu J., Qin L., Kuroda M., Gao J.-F., Chen L.-H., He Y., Sakamoto N. and Yurimoto H. (2020) gEvidence of metasomatism in the interior of Vestah Nature Communications, 11, 1289.

20.    Zhang A.-C., Kawasaki N., Kuroda M., Li Y., Wang H.-P., Bai X.-N., Sakamoto N., Yin Q.-Z. and Yurimoto H. (2020) gUnique angrite-like fragments in a CH3 chondrite reveal a new basaltic planetesimalh Geochimica et Cosmochimica Acta, 275, 48–63.

21.    Bollard J., Kawasaki N., Sakamoto N., Olsen M., Itoh S., Larsen K., Wielandt D., Schiller M., Connelly J. N., Yurimoto H. and Bizzarro M. (2019) gCombined U-corrected Pb-Pb dating and 26Al-26Mg systematics of individual chondrules – Evidence for a reduced initial abundance of 26Al amongst inner Solar System chondrulesh Geochimica et Cosmochimica Acta, 260, 62–83.

22.    Sas M., Kawasaki N., Sakamoto N., Shane P., Zellmer G. F., Kent A. J. R. and Yurimoto H. (2019) gThe ion microprobe as a tool for obtaining strontium isotopes in magmatic plagioclase: A case study at Okataina Volcanic Centre, New Zealandh Chemical Geology, 513, 153–166.

 

Others

23.    Arakawa S., Yamamoto D., Ishizaki L., Okamoto T. and Kawasaki N. (2024) gOxygen Isotope Exchange Between Dust Aggregates and Ambient Nebular Gash The Astrophysical Journal, 974, 199 (6pp).

24.    Sugawara S., Fujiya W., Kawasaki N., Sakamoto N., Yamaguchi A. and Yurimoto H. (2024) gUpdate on the 53Mn-53Cr ages of dolomite in the Ivuna CI chondrite and asteroid Ryugu sampleh Geochimica et Cosmochimica Acta, 382, 40–50.

25.    Kita N. T., Kawasaki N. (4th of 89 authors) et al. (2024) gDisequilibrium oxygen isotope distribution among aqueously altered minerals in Ryugu asteroid returned samplesh Meteoritics & Planetary Science, 59, 2097–2116.

26.    Piani L., Kawasaki N. (3rd of 88 authors) et al. (2023) gHydrogen Isotopic Composition of Hydrous Minerals in Asteroid Ryuguh The Astrophysical Journal Letters, 946, L43 (11pp).

27.    Sas M., Shane P., Kawasaki N., Sakamoto N., Zellmer G. F. and Yurimoto H. (2022) gInter- and intra-crystal quartz ƒΒ18O homogeneity at Okataina volcano, Aotearoa New Zealand: Implications for rhyolite genesish Journal of Volcanology and Geothermal Research, 421, 107430.

28.    Kamibayashi M., Tachibana S., Yamamoto D., Kawasaki N. and Yurimoto H. (2021) gEffect of Hydrogen Gas Pressure on Calcium–Aluminum-rich Inclusion Formation in the Protosolar Disk: a Laboratory Simulation of Open-system Melt Crystallizationh The Astrophysical Journal Letters, 923, L12 (8pp).

29.    Kebukawa Y., Kobayashi S., Kawasaki N., Wang Y., Yurimoto H. and Cody G. D. (2021) gHydrogen isotopic exchange kinetics between organic matter and water: Implications for chemical evolution during meteorite parent body processingh Meteoritics & Planetary Science, 56, 440–454.

30.    Nonoyama T., Wang L., Tsuda M., Suzuki Y., Kiyama R., Yasuda K., Tanaka S., Nagata K., Fujita R., Sakamoto N., Kawasaki N., Yurimoto H. and Gong, J. P. (2021) gIsotope Microscopic Observation of Osteogenesis Process Forming Robust Bonding of Double Network Hydrogel to Boneh Advanced Healthcare Materials, 10, 2001731.

31.    Xiong Y., Zhang A.-C., Kawasaki N., Ma C., Sakamoto N., Chen J.-N., Gu L.-X. and Yurimoto H. (2020) gMineralogical and oxygen isotopic study of a new ultrarefractory inclusion in the Northwest Africa 3118 CV3 chondriteh Meteoritics & Planetary Science, 55, 2184–2205.

32.    Yamamoto D., Tachibana S., Kawasaki N. and Yurimoto H. (2020) gSurvivability of presolar oxygen isotopic signature of amorphous silicates dust in the protosolar diskh Meteoritics & Planetary Science, 55, 1281–1292.

33.    Okuchi T., Purevjav N., Tomioka N., Lin J. F., Kuribayashi T., Schoneveld L., Hwang H., Sakamoto N., Kawasaki N. and Yurimoto H. (2015) gSynthesis of large and homogeneous single crystals of water-bearing minerals by slow cooling at deep-mantle pressuresh American Mineralogist, 100, 1483–1492.

 

Hayabusa, Hayabusa2 & OSIRIS-REx projects (non-main author)

34.    Connolly H. C., Lauretta D. S., Kawasaki N. (10th of 57 authors) et al. gAn overview of the petrography and petrology of particles from aggregate sample from asteroid Bennuh Meteoritics & Planetary Science, doi.org/10.1111/maps.14335.

35.    McCoy T., Kawasaki N. (34th of 66 authors) et al. gAn evaporite sequence from ancient brine recorded in Bennu samplesh Nature, 637, 1072–1077.

36.    Schönbächler M., Kawasaki N. (33rd of 90 authors) et al. (2024) gZirconium isotope composition indicates s-process depletion in samples returned from asteroid Ryuguh Meteoritics & Planetary Science, doi.org/10.1111/maps.14279.

37.    Spitzer F., Kawasaki N. (34th of 91 authors) et al. (2024) gThe Ni isotopic composition of Ryugu reveals a common accretion region for carbonaceous chondritesh Science Advances, 10, adp2426.

38.    Miyahara M., Kawasaki N. (72nd of 80 authors) et al. (2024) gMicroscopic slickenside as a record of weak shock metamorphism in the surface layer of asteroid Ryuguh Meteoritics & Planetary Science, doi.org/10.1111/maps.14271.

39.    Yui H., Kawasaki N. (38th of 89 authors) et al. (2024) gPyrrhotites in asteroid 162173 Ryugu: Records of the initial changes on their surfaces with aqueous alterationh Geochimica et Cosmochimica Acta, 379, 172–183.

40.    Aléon J., Kawasaki N. (7th of 93 authors) et al. (2024) gHydrogen in magnetite from asteroid Ryuguh Meteoritics & Planetary Science, 59, 2058–2072.

41.    Mouloud B., Kawasaki N. (79th of 87 authors) et al. (2024) gFour-dimensional-STEM analysis of the phyllosilicate-rich matrix of Ryugu samplesh Meteoritics & Planetary Science, 59, 2002–2022.

42.    Phan V. T. H., Kawasaki N. (76th of 85 authors) et al. (2024) gIn situ investigation of an organic micro-globule and its mineralogical context within a Ryugu gsandh grainh Meteoritics & Planetary Science, 59, 1983–2001.

43.    Torrano Z. A., Kawasaki N. (33rd of 92 authors) et al. (2024) gNeodymium-142 deficits and samarium neutron stratigraphy of C-type asteroid (162173) Ryuguh Meteoritics & Planetary Science, 59, 1966–1982.

44.    Leroux H., Kawasaki N. (72nd of 80 authors) et al. (2024) gPhyllosilicates with embedded Fe-based nanophases in Ryugu and Orgueilh Meteoritics & Planetary Science, 59, 1947–1965.

45.    Noguchi T., Kawasaki N. (80th of 89 authors) et al. (2024) gMineralogy and petrology of fine-grained samples recovered from the asteroid (162173) Ryuguh Meteoritics & Planetary Science, 59, 1877–1906.

46.    Morita M., Kawasaki N. (38th of 89 authors) et al. (2023) gAnalysis of Cation Composition in Dolomites on the Intact Particles Sampled from Asteroid Ryuguh Analytical Chemistry, 96, 170–178.

47.    Hu Y., Kawasaki N. (34th of 92 authors) et al. (2024) gPervasive aqueous alteration in the early Solar System revealed by potassium isotopic variations in Ryugu samples and carbonaceous chondritesh Icarus, 409, 115884.

48.    Nakanishi N., Kawasaki N. (32nd of 89 authors) et al. (2023) gNucleosynthetic s-Process Depletion in Mo from Ryugu samples returned by Hayabusa2h Geochemical Perspectives Letters, 28, 31–36.

49.    Bizzarro M., Kawasaki N. (30th of 89 authors) et al. (2023) gThe Magnesium Isotope Composition of Samples Returned from Asteroid Ryuguh The Astrophysical Journal Letters, 958, L25 (9pp).

50.    Yokoyama T., Kawasaki N. (35th of 92 authors) et al. (2023) gWater circulation in Ryugu asteroid affected the distribution of nucleosynthetic isotope anomalies in returned sampleh Science Advances, 9 (45), adi7048.

51.    Tang H., Kawasaki N. (34th of 90 authors) et al. (2023) gThe Oxygen Isotopic Composition of Samples Returned from Asteroid Ryugu with Implications for the Nature of the Parent Planetesimalh The Planetary Science Journal, 4 (8), 144.

52.    Nguyen A. N., Kawasaki N. (33rd of 92 authors) et al. (2023) gAbundant presolar grains and primordial organics preserved in carbon-rich exogenous clasts in asteroid Ryuguh Science Advances, 9 (28), adh1003.

53.    Noguchi T., Kawasaki N. (131st of 139 authors) et al. (2023) gA dehydrated space-weathered skin cloaking the hydrated interior of Ryuguh Nature Astronomy, 7, 170–181.

54.    Yokoyama T., Kawasaki N. (34th of 147 authors) et al. (2023) gSamples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteoritesh Science, eabn7850.

55.    Paquet M., Kawasaki N. (35th of 94 authors) et al. (2022) gContribution of Ryugu-like material to Earthfs volatile inventory by Cu and Zn isotopic analysish Nature Astronomy, 7, 182–189.

56.    Moynier F., Kawasaki N. (35th of 94 authors) et al. (2022) gThe Solar System calcium isotopic composition inferred from Ryugu samplesh Geochemical Perspectives Letters, 24, (LLNL-JRNL-841833).

57.    Hopp T., Kawasaki N. (31st of 92 authors) et al. (2022) gRyugufs nucleosynthetic heritage from the outskirts of the Solar Systemh Science Advances, 8, eadd8141.

58.    Barosch J., Kawasaki N. (75th of 118 authors) et al. (2022) gPresolar stardust in asteroid Ryuguh The Astrophysical Journal Letters, 935, L3 (12pp).

59.    Yurimoto H., Abe K., Abe M., Ebihara M., Fujimura A., Hashiguchi M., Hashizume K., Ireland T. R., Itoh S., Katayama J., Kato C., Kawaguchi J., Kawasaki N., Kitajima F., Kobayashi S., Meike T., Mukai T., Nagao K., Nakamura T., Naraoka H., Noguchi T., Okazaki R., Park C., Sakamoto N., Seto Y., Takei M., Tsuchiyama A., Uesugi M., Wakaki S., Yada T., Yamamoto K., Yoshikawa M. and Zolensky M. E. (2011) gOxygen Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Missionh Science, 333, 1116–1119.

 

“ϊ–{Œκ˜_•Ά

1.       μϊ± ‹³s (2023) u覐΂̓οŠφ”­«•ο—L•¨CAI‚ΜAl–Mg”N‘γŠwv, ’n‹…‰»Šw, 57, 1–12. (2021”N“x“ϊ–{’n‹…‰»Šw‰ο§—γάŽσά‹L”O˜_•Ά).

 

Žσά

2021”N “ϊ–{’n‹…‰»Šw‰ο§—γά@u“οŠφ”­«•ο—L•¨‚Μ“―ˆΚ‘Μ•ͺΝ‚π’Κ‚Ά‚½‘Ύ—zŒnΕ‰Šϊ‚Μ•¨ŽΏi‰»‚ΜŒ€‹†v

 

ŠO•”Ž‘‹ΰŠl“Ύ—π

1.       2025–2028”N“x@•Ά•”‰ΘŠwΘ‰ΘŠwŒ€‹†”ο@Šξ”ΥŒ€‹†iAj m25H00678n@‘γ•\

2.       2024–2028”N“x@•Ά•”‰ΘŠwΘ‰ΘŠwŒ€‹†”ο@‘Ϋ‹€“―Œ€‹†‰Α‘¬Šξ‹ΰiŠCŠO˜AŒgŒ€‹†j m24KK0072n@‘γ•\

3.       2024–2026”N“x@Z—Fΰ’c@Šξ‘b‰ΘŠwŒ€‹†•¬@‘γ•\

4.       2024–2026”N“x@“ϊŠφEŽΐ‹g§Šw‰ο@Œ€‹†•¬@‘γ•\

5.       2022–2024”N“x@•Ά•”‰ΘŠwΘ‰ΘŠwŒ€‹†”ο@’§ν“IŒ€‹†i–G‰θj m22K18722n@‘γ•\

6.       2022–2023”N“x@ŽR“c‰ΘŠwU‹»ΰ’c@Œ€‹†‰‡•i“ϊ–{’n‹…‰»Šw‰ο„‘Ej@‘γ•\

7.       2022”N“x@–kŠC“Ή‰ΘŠw‹Zp‘‡U‹»ƒZƒ“ƒ^[@ƒm[ƒXƒeƒbƒNΰ’c@ŽαŽθŒ€‹†lήEƒlƒbƒgƒ[ƒNˆη¬•β•‹ΰiƒm[ƒXƒ^ƒŒƒ“ƒg•β•‹ΰj@mT-6-1n@‘γ•\

8.       2020–2022”N“x@•Ά•”‰ΘŠwΘ‰ΘŠwŒ€‹†”ο@Šξ”ΥŒ€‹†iCj m20K04036n@•ͺ’S

9.       2019–2022”N“x@•Ά•”‰ΘŠwΘ‰ΘŠwŒ€‹†”ο@Šξ”ΥŒ€‹†iAj m19H00712n@•ͺ’S

10.    2018–2019”N“x@•Ά•”‰ΘŠwΘ‰ΘŠwŒ€‹†”ο@ŽαŽθŒ€‹† m18K13609n@

11.    2018”N“x@ωμ‰ΘŠwŒ€‹†•¬

12.    2016–2017”N“x@•Ά•”‰ΘŠwΘ‰ΘŠwŒ€‹†”ο@ŽαŽθŒ€‹†iBj m16K17837n

13.    2014–2015”N“x@•Ά•”‰ΘŠwΘ‰ΘŠwŒ€‹†”ο@“Α•ΚŒ€‹†ˆυ§—γ”ο m26E594n